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G e o p h y s i c a l  T u T o r i a l  —  c o o r d i n a T e d  b y  M a T T  h a l l

Full-waveform inversion, Part 2: Adjoint modeling

Introduction
This is the second part of a three-part tutorial series on full-

waveform inversion (FWI) in which we provide a step-by-step 
walk through of setting up forward and adjoint wave equation 
solvers and an optimization framework for inversion. In Part 1 
(Louboutin et al., 2017), we showed how to use Devito 
(http://www.opesci.org/devito-public) to set up and solve acoustic 
wave equations with (impulsive) seismic sources and sample wave-
fields at the receiver locations to forward model shot records. Here 
in Part 2, we will discuss how to set up and solve adjoint wave 
equations with Devito and, from that, how we can calculate gra-
dients and function values of the FWI objective function.

The gradient of FWI is most commonly computed via the 
adjoint-state method, by crosscorrelating forward and adjoint 
wavefields and summing the contributions over all time steps 
(Plessix, 2006). Calculating the gradient for one source location 
consists of three steps:

1) Solve the forward wave equation to create a shot record. The 
time varying wavefield must be stored for use in step 3; tech-
niques such as subsampling can be used to reduce the storage 
requirements.

2) Compute the data residual (or misfit) between the predicted 
and observed data.

3) Solve the corresponding discrete adjoint model using the data 
residual as the source. Within the adjoint (reverse) time loop, 
crosscorrelate the second time derivative of the adjoint wave-
field with the forward wavefield. These crosscorrelations are 
summed to form the gradient.

We start with the definition and derivation of the adjoint 
wave equation and its Devito stencil and then show how to compute 
the gradient of the conventional least-squares FWI misfit function. 
As usual, this tutorial is accompanied by all the code you need to 
reproduce the figures. Go to github.com/seg/tutorials-2018 and 
follow the links.

A simple experiment
To demonstrate the gradient computation in the simplest 

possible way, we perform a small seismic transmission experiment 
with a circular imaging phantom, i.e., a constant velocity model 
with a circular high-velocity inclusion in its center, as shown in 
Figure 1. For a transmission experiment, we place 21 seismic 
sources on the left-hand side of the model and 101 receivers on 
the right-hand side.

We will use the forward propagator from Part 1 to independently 
model the 21 “observed” shot records using the true model. As the 
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initial model for our gradient calculation, we use a constant velocity 
model with the same velocity as the true model, but without the 
circular velocity perturbation. We will then model the 21 predicted 
shot records for the initial model, calculate the data residual and 
gradient for each shot, and sum them to obtain the full gradient.

The adjoint wave equation
Adjoint wave equations are a main component in seismic 

inversion algorithms and are required for computing gradients of 
both linear and nonlinear objective functions. To ensure stability 
of the adjoint modeling scheme and the expected convergence of 
inversion algorithms, it is important that the adjoint wave equation 
is in fact the adjoint (transpose) of the forward wave equation. 
The derivation of the adjoint wave equation in the acoustic case 
is simple, as it is self-adjoint if we ignore the absorbing boundaries 
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Figure 1. (a) The velocity model, with sources and receivers arranged vertically. (b) 
The initial estimate. (c) The difference between the model and the initial estimate.
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for the moment. However, in the general case, discrete wave 
equations do not have this property (such as the coupled anisotropic 
TTI wave equation [Zhang et al., 2011]) and require correct 
derivations of their adjoints. We concentrate here, as in Part 1, 
on the acoustic case and follow an optimize-discretize approach, 
which means we write out the adjoint wave equation for the 
continuous case first and then discretize it, using finite-difference 
operators of the same order as for the forward equation. With the 
variables defined as in Part 1 and the data residual δd(x, y, t; xr, 
yr), located at xr, yr (receiver locations) as the adjoint source, the 
continuous adjoint wave equation is given by:

m(x, y) d
2v(t ,x, y)
dt 2

− Δv(t ,x, y) − H (t ,x, y) = δd (t ,x, y;xr , y r ).   (1)

The adjoint acoustic wave equation is equivalent to the forward 
equation with the exception of the damping term Η(t, x, y) = 
η(x, y)dv(t, x, y)/dt, which contains a first time derivative and 
therefore has a change of sign in its adjoint. (A second derivative 
matrix is the same as its transpose, whereas a first derivative matrix 
is equal to its negative transpose and vice versa.)

Following the pattern of Part 1, we first define the discrete 
adjoint wavefield v as a Devito TimeFunction object. For reasons 
we will explain later, we do not need to save the adjoint wavefield:

v = TimeFunction(name="v", grid=model.grid,
                 time_order=2, space_order=4,
                 save=False)

Now symbolically set up the PDE:

pde = model.m * v.dt2 - v.laplace - model.damp * v.dt

As before, we then define a stencil:

stencil_v = Eq(v.backward, solve(pde, v.backward)[0])

Just as for the forward wave equation, stencil_v defines the 
update for the adjoint wavefield of a single time step. The only 
difference is that, while the forward-modeling propagator goes 
forward in time, the adjoint propagator goes backward in time, 
since the initial time conditions for the forward propagator turn 
into final time conditions for the adjoint propagator. As for the 
forward stencil, we can write out the corresponding discrete 
expression for the update of the adjoint wavefield:

v[time−dt]= 2v[time]− v[time+dt]+ dt
2

m
Δv[time] ,      (2)

with dt being the time-stepping interval. Once again, this 
expression does not contain any (adjoint) source terms so far, 
which will be defined as a separate SparseFunction object. Since 
the source term for the adjoint wave equation is the difference 
between an observed and modeled shot record, we first define 
an (empty) shot record residual with 101 receivers and coor-
dinates defined in rec_coords. We then set the data field 

rec.data of our shot record to be the data residual between the 
observed data d_obs and the predicted data d_pred. The symbolic 
residual source expression res_term for our adjoint wave equation 
is then obtained by injecting the data residual into the modeling 
scheme (residual.inject). Since we solve the time-stepping 
loop backward in time, the res_term is used to update the previ-
ous adjoint wavefield v.backward, rather than the next wavefield. 
As in the forward-modeling example, the source is scaled by 
dt2/m. In Python, we have:

residual = PointSource(name='residual', ntime=nt,
                       grid=model.grid, coordinates=rec_coords)

res_term = residual.inject(field=v.backward,
                           expr=residual * dt**2 / model.m,
                           offset=model.nbpml)

In this demonstration, there is no real data. Instead we will 
generate the “observed” data via forward modeling with the true 
model model. The synthetic data is generated from the initial 
model model0. The resulting data, and their difference, are shown 
in Figure 2.

Finally, we create the full propagator by adding the residual 
source expression to our previously defined stencil and set the flag 
time_axis=Backward, to specify that the propagator runs back-
ward in time:

op_adj = Operator([stencil_v] + res_term, time_axis=Backward)

In contrast to forward modeling, we do not record any mea-
surements at the surface since we are only interested in the adjoint 
wavefield itself. The full script for setting up the adjoint wave 
equation, including an animation of the adjoint wavefield is 
available in adjoint_modeling.ipynb.

Computing the FWI gradient
The goal of FWI is to estimate a discrete parametrization of 

the subsurface by minimizing the misfit between the observed 
shot records of a seismic survey and numerically modeled shot 
records. The predicted shot records are obtained by solving an 
individual wave equation per shot location and depend on the 
parametrization m of our wave propagator. The most common 
function for measuring the data misfit between the observed and 
modeled data is the l2 norm, which leads to the following objective 
function (Lions, 1971; Tarantola, 1984):

minimize
m

f (m)= 1
2i=1

ns

∑  di
pred(m,qi )−di

obs

2

2
,           (3)

where the index i runs over the total number of shots ns, and the 
model parameters are the squared slowness. Optimization prob-
lems of this form are called nonlinear least-squares problems, 
since the predicted data modeled with the forward-modeling 
propagator (op_fwd() in Part 1) depends nonlinearly on the 
unknown parameters m. The full derivation of the FWI gradient 
using the adjoint-state method is outside the scope of this tutorial, 
but conceptually we obtain the gradient by applying the chain 
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rule and taking the partial derivative of the inverse wave equation 
A(m)−1 with respect to m, which yields the following expression 
(Plessix, 2006; Virieux and Operto, 2009):

                (4)

The inner sum time = 1,…, nt runs over the number of com-
putational time steps nt and  denotes the second temporal deriva-
tive of the adjoint wavefield v. Computing the gradient of equation 
3, therefore corresponds to performing the point-wise multiplica-
tion (denoted by the symbol ⊙) of the forward wavefields with 
the second time derivative of the adjoint wavefield and summing 
over all time steps.

To avoid the need to store the adjoint wavefield, the FWI 
gradient is calculated in the reverse time loop while solving the 
adjoint wave equation. To compute the gradient g for the current 
time step v[time]:

g = g − v[time-dt]− 2v[time]+ v[time+dt]
dt2

⊙ u[time] .  (5)

The second time derivative of the adjoint wavefield is computed 
with a second-order finite-difference stencil and uses the three 
adjoint wavefields that are kept in memory during the adjoint 
time loop (equation 2).

In Devito, we define the gradient as a Function since the 
gradient is computed as the sum over all time steps and therefore 
has no time dependence:

grad = Function(name="grad", grid=model.grid)

The update for the gradient as defined in equations 4 and 5 
is then:

grad_update = Eq(grad, grad - u * v.dt2)

Now we must add the gradient update expression to the 
adjoint propagator op_grad. This yields a single symbolic expres-
sion with update instructions for both the adjoint wavefield and 
the gradient:

op_grad = Operator([stencil_v] + res_term + [grad_update],
                   time_axis=Backward)

Solving the adjoint wave equation by running the following 
now computes the FWI gradient for a single source. Its value is 
stored in grad.data.

op_grad(u=u0, v=v, m=model0.m,
        residual=pred.data-obs.data,
        time=nt, dt=dt)

Now we can iterate over all the shot locations, running the 
same sequence of commands each time.

This gradient can then be used for a simple gradient descent 
optimization loop, as illustrated at the end of the notebook 
adjoint_modeling.ipynb. After each update, a new gradient is 
computed for the new velocity model until sufficient decrease of 
the objective or chosen number of iteration is reached. A detailed 
treatment of optimization and more advanced algorithms will be 
described in the third and final part of this tutorial series.

Figure 2. Shot records for a shot at a Z position of 0.5 km. (a) The observed data, using the known model with the high-velocity disc, contains a perturbation not present 
in (b) the “predicted” data, using the initial estimate of the model, which contains no disc. (c) The residual.

Figure 3. Gradient plots for (a) a single shot at 0.5 km and (b) the sum of all shots.
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Conclusions
We need the gradient of the FWI objective function in order 

to find the optimal solution. It is computed by solving adjoint wave 
equations and summing the point-wise product of forward and 
adjoint wavefields over all time steps. Using Devito, the adjoint 
wave equation is set up in a similar fashion as the forward wave 
equation, with the main difference being the (adjoint) source, which 
is the residual between the observed and predicted shot records.

With the ability to model shot records and compute gradients 
of the FWI objective function, we are ready to demonstrate how 
to set up more gradient-based algorithms for FWI in Part 3 
next month. 
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