Full-waveform inversion (FWI) has become the centerpiece of velocity model building (VMB) in seismic data processing in recent years. It has proven capable of significantly improving the velocity model and, thus, the migration image for different acquisition types and geologic settings, including complex environments such as salt. With the advent of FWI imaging, the scope of FWI applications has extended further from VMB into the imaging landscape. However, current FWI applications in the industry prevalently employ the acoustic approximation. One common problem of acoustic FWI (A-FWI) is the apparent salt halos at the salt-sediment interface in the resulting FWI velocity and FWI image, the presence of which hinders direct interpretation and imaging focusing around salt bodies. With synthetic and field data examples, we demonstrate that this salt halo is caused mainly by the large mismatch between the elastic recorded data and the acoustic modeled data, particularly at middle to long offsets. To overcome limitations imposed by acoustic assumptions, we developed an elastic FWI (E-FWI) algorithm that combines an elastic modeling engine with the time-lag cost function, which we call elastic time-lag FWI (E-TLFWI). With a more accurate modeling engine, E-TLFWI significantly reduces the salt halo observed in its acoustic counterpart. However, we also observe that the images migrated using the A-FWI and E-FWI velocity models remain similar overall, with some slight improvements around and beneath salt boundaries, particularly near steep salt flanks, as a result of the reduced salt halo. By contrast, FWI images derived from E-TLFWI show considerable benefits over those from acoustic time-lag FWI, such as improved event focusing, better structural continuity, and higher signal-to-noise ratio. The sharpened salt boundaries and enhanced quality of the FWI images reveal the significant value of E-FWI and provide the justification for its greatly increased cost.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.