Abstract

Digital rocks are 3D image-based representations of pore-scale geometries that reside in virtual laboratories. High-resolution 3D images that capture microstructural details of the real rock are used to build a digital rock. The digital rock, which is a data-driven model, is used to simulate physical processes such as fluid flow, heat flow, electricity, and elastic deformation through basic laws of physics and numerical simulations. Unconventional reservoirs are chemically heterogeneous where the rock matrix is composed of inorganic minerals, and hydrocarbons are held in the pores of thermally matured organic matter, all of which vary spatially at the nanoscale. This nanoscale heterogeneity poses challenges in measuring the petrophysical properties of source rocks and interpreting the data with reference to the changing rock structure. Focused ion beam scanning electron microscopy is a powerful 3D imaging technique used to study source rock structure where significant micro- and nanoscale heterogeneity exists. Compared to conventional rocks, the imaging resolution required to image source rocks is much higher due to the nanoscale pores, while the field of view becomes smaller. Moreover, pore connectivity and resulting permeability are extremely low, making flow property computations much more challenging than in conventional rocks. Elastic properties of source rocks are significantly more anisotropic than those of conventional reservoirs. However, one advantage of unconventional rocks is that the soft organic matter can be captured at the same imaging resolution as the stiff inorganic matrix, making digital elasticity computations feasible. Physical measurement of kerogen elastic properties is difficult because of the tiny sample size. Digital rock physics provides a unique and powerful tool in the elastic characterization of kerogen.

You do not currently have access to this article.