Abstract

We present a basin-wide rock-physics analysis of reservoir rocks and fluid properties in Campeche Basin. Reservoir data from discovery wells are analyzed in terms of their relationship between P-wave velocity, density, porosity, clay content, Poisson's ratio (PR), and P-impedance (IP). The fluid properties are computed by using in-situ pressure, temperature, American Petroleum Institute gravity, gas-oil ratio, and volume of gas, oil, and water. Oil- and gas-saturated reservoir sands show strong PR anomalies compared to modeled water sand at equivalent depth. This suggests that PR anomalies can be used as a direct hydrocarbon indicator in the Tertiary sands in Campeche Basin. However, false PR anomalies due to residual gas or oil exist and compose about 30% of the total anomalies. The impact of fluid properties on IP and PR is calibrated using more than 30 discovery wells. These calibrated relationships between fluid properties and PR can be used to guide or constrain amplitude variation with offset inversion for better pore fluid discrimination.

You do not currently have access to this article.