Abstract

The Python Earth Engine application programming interface (API) provides a new open-source ecosphere for testing hydrocarbon detection algorithms on large volumes of images curated with the Google Earth Engine. We specifically demonstrate the Python Earth Engine API by calculating three hydrocarbon indices: fluorescence, rotation absorption, and normalized fluorescence. The Python Earth Engine API provides an ideal environment for testing these indices with varied oil seeps and spills by (1) removing barriers of proprietary software formats and (2) providing an extensive library of data analysis tools (e.g., Pandas and Seaborn) and classification algorithms (e.g., Scikit-learn and TensorFlow). Our results demonstrate end-member cases in which fluorescence and normalized fluorescence indices of seawater and oil are statistically similar and different. As expected, predictive classification is more effective and the calculated probability of oil is more accurate for scenarios in which seawater and oil are well separated in the fluorescence space.

You do not currently have access to this article.