Abstract

Complex geologic structure, a heterogeneous reservoir, and complications related to high pressure during drilling necessitate carrying out geomechanical modeling to understand the physical properties of rocks and fluids present within the Early Cretaceous synrift sequence in the Bantumilli South area of the Krishna-Godavari Basin in India. Reservoirs within the synrift sequence exhibit low permeability and high pore pressure. Identification of safe mud-weight window zones is critical for safe drilling of wells in this part of the basin. A detailed workflow for building a robust 3D geomechanical model and its applications to well planning and hydraulic fracturing are presented. Elastic properties of the reservoirs were estimated by prestack seismic inversion. Elastic properties and pore pressure volumes were used to simulate the 3D stress field. The maximum horizontal stress direction is observed to be 130°N ± 5°, i.e., northwest to southeast, and estimated fracture pressure (minimum horizontal stress) values range between 10,000 and 14,200 psi within the synrift sequence. The study has shown that the Cretaceous section of the reservoir has narrow mud-weight window zones. These zones are governed mainly by a high pore pressure regime in the reservoirs. Additionally, deep-seated basement faults have played an important role in the compartmentalization of the reservoir in terms of geomechanical properties.

You do not currently have access to this article.