Abstract

It is common practice to make facies estimations from the outcomes of seismic inversions and their derivatives. Bayesian analysis methods are a popular approach to this. Facies are important indicators of hydrocarbon deposition and geologic processes. They are critical to geoscientists and engineers. The application of Bayes’ rule maps prior probabilities to posterior probabilities when given new evidence from observations. Per-facies elastic probability density functions (ePDFs) are constructed from elastic-log and rock-physics model crossplots, over which inversion results are superimposed. The ePDFs are templates for Bayesian analysis. In the context of reservoir characterization, the new information comes from seismic inversions. The results are volumes of the probabilities of occurrences of each of the facies at all points in 3D space. The concepts of Bayesian inference have been applied to the task of building low-frequency models for seismic inversions without well-log interpolation. Both a constant structurally compliant elastic trend approach and a facies-driven method, where models are constructed from per-facies trends and initial facies estimates, have been tested. The workflows make use of complete 3D prior information and measure and account for biases and uncertainties in the inversions and prior information. Proper accounting for these types of effects ensures that rock-physics models and inversion data prepared for reservoir property analysis are consistent. The effectiveness of these workflows has been demonstrated by using a Gulf of Mexico data set. We have shown how facies estimates can be effectively used to build reasonable low-frequency models for inversion, which obviate the need for well-log interpolation and provide full 3D variability. The results are more accurate probability-based net-pay estimates that correspond better to geology. We evaluate the workflows by using several measures including precision, confidence, and probabilistic net pay.

You do not currently have access to this article.