Topside distributed acoustic sensing (DAS) of subsea wells requires advanced optical engineering solutions to compensate for reduced acoustic bandwidth, optical losses, and back reflections that are accumulated through umbilicals, multiple wet- and dry-mate optical connectors, splices, optical feedthrough systems, and downhole fibers. To address these issues, we introduce a novel DAS solution based on subsea fiber topology consisting of two transmission fibers from topside and an optical circulator deployed in the optical flying lead at the subsea tree. This solution limits the sensing fiber portion to the downhole fiber, located below the subsea tree, and enables dry-tree-equivalent acoustic sampling frequencies of more than 10 kHz while eliminating all back reflections from multiple subsea connectors above the tree. When combined with enhanced backscatter single-mode fiber, this gives rise to a DAS interrogation system that is capable of providing dry-tree-equivalent acoustic sensing performance over the entire length of the subsea well, regardless of the tie-back distance. It also enables the same spectral-based DAS processing algorithms developed for seismic, sand control, injector/producer profiling, and well integrity on dry-tree wells to be applied directly to subsea DAS data. The performance of this subsea DAS system has been validated through a series of laboratory and field trials. We show the results of the tests and discuss how the system is deployed within subsea infrastructure.

You do not currently have access to this article.