Abstract

This paper presents a predictive rock-physics model for unconventional shale reservoirs based on an extended Maxwell scheme. This model accounts for intrinsic anisotropy of rock matrix and heterogeneities and shape-induced anisotropy arising because the dimensions of kerogen inclusions and pores are larger parallel to the bedding plane than perpendicular to this plane. The model relates the results of seismic amplitude variation with offset inversion, such as P- and S-impedance, to the composition of the rock and enables identification of rock classes such as calcareous, argillaceous, siliceous, and mixed shales. This allows the choice of locations with the best potential for economic production of hydrocarbons. While this can be done using well data, prestack inversion of seismic P-wave data allows identification of the best locations before the wells are drilled. The results clearly show the ambiguity in rock classification obtained using poststack inversion of P-wave seismic data and demonstrate the need for prestack seismic inversion. The model provides estimates of formation anisotropy, as required for accurate determination of P- and S-impedance, and shows that anisotropy is a function not only of clay content but also other components of the rock as well as the aspect ratio of kerogen and pores. Estimates of minimum horizontal stress based on the model demonstrate the need to identify rock class and estimate anisotropy to determine the location of any stress barriers that may inhibit hydraulic fracture growth.

You do not currently have access to this article.