Abstract

Investigation of ground failure triggered by the 2018 Mw 7.1 Anchorage earthquake showed that landslides, liquefaction, and ground cracking all occurred and caused significant damage. Shallow rock falls and rock slides were the most abundant types of landslides, but they occurred in smaller numbers than global models that are based on earthquake magnitude predict; this might result from the 2018 earthquake being an intraslab event. Liquefaction was common in alluvial and intertidal areas; ground deformation probably related to liquefaction damaged numerous houses and port facilities in Anchorage. Ground cracking was pervasive near the edges of slopes in hilly areas and caused perhaps the most significant property damage of all types of ground failure. A complex of slump–earth flows was triggered along coastal bluffs in southern Anchorage where slides also occurred in 1964; the 2018 slides involved both mobilization of new landside material and reactivation of parts of the 1964 landslide deposits. Large translational slides that formed during the 1964 Alaska earthquake showed evidence of deformation along pre‐existing failure surfaces but did not reactivate with new net downslope displacement. Modeling suggests that ground motion in 2018 was of insufficient duration and too high frequency to trigger reactivation of the deep landslides.

You do not currently have access to this article.