Abstract

The hypocenter locations of the larger and better recorded earthquakes of the New Madrid seismic zone are examined in order to determine how closely the hypocenters lie along planar surfaces, thus relating the foci to active fault surfaces. For this purpose more than 500 earthquakes of the region have been selected for study, based on the number (7 or more) of observing stations used in the initial hypocenter location and on the quality of the P-wave onset. These events are relocated using a joint hypocenter-velocity-depth (JHVD) algorithm.

The relocated earthquakes are separated geographically into three trends: ARK, the southwest trending zone from Caruthersville, Missouri, to Marked Tree, Arkansas; DWM, the northeast trending zone from New Madrid to Charleston, Missouri; and CEN, the central, left-stepping offset zone from Ridgely, Tennessee, to New Madrid, Missouri. Vertical profiles taken along and across the ARK and DWM trends verify the strike and dip of dominantly strike slip motion on near vertical active faults along these trends. These results agree with previously determined composite focal mechanism solutions for these trends. No coherent picture has been obtained for the CEN trend.

As a by-product of the study, velocity models from the JHVD inversion are found to be reasonably uniform throughout the New Madrid seismic zone, and to offer supporting evidence for the presence of a shallow low velocity zone in the central portion of the Mississippi embayment.

First Page Preview

First page PDF preview
You do not currently have access to this article.