Precise knowledge of earthquake magnitudes is vital for accurate characterization of seismic hazards. However, the estimation of earthquake magnitude, particularly for small events, is complicated by differences in network procedures and completeness. This produces disparate magnitude estimates for the same event and emphasizes the need for a consistent and transportable magnitude estimation procedure. Here, we investigate the use of the relative magnitude method, which measures earthquake magnitude from a least‐squares inversion of interlinked waveform amplitude ratios. Our results show that that the relative magnitude method can establish both local and moment magnitudes for many events in the 2019 Ridgecrest sequence. The method also provides constraints on moment magnitude estimates for M <3 events, which are not routinely available using current methods. Although the relative magnitude method is advantageous because it can be applied uniformly in various regions and does not require empirical distance or attenuation corrections, there are several parameters that require subjective decision making and may introduce bias in the resulting magnitude estimates. These include acceptable thresholds for signal‐to‐noise ratios and cross correlation, filtering procedures, sampling windows, and station selection. Here, we not only calculate magnitude but also investigate how the subjective decision making affects the resulting magnitudes. Based on our analysis, we present recommendations to enhance the utility of this method for future users.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.