Seismic data contains a continuous record of wind influenced by different factors across the frequency spectrum. To assess the influences of wind on ground motion, we use colocated wind and seismic data from 110 stations in the Alaska component of the EarthScope Transportable Array. We compare seismic probability power spectral densities and wind speed and direction during 2018 to develop a quantitative measure of the seismic sensitivity to wind. We observe a pronounced increase in seismic energy as a function of wind speed for almost all stations. At frequencies below the microseism band, our observations agree with previous authors in finding that sensor emplacement and ground materials are important, and that much of the wind influence likely comes from associated changes in barometric pressure. Wind has the least influence in the microseism band, but that is only because its contribution to noise is much smaller than the ubiquitous microseism background. At frequencies above the microseism band, we find that wind sensitivity is correlated with land cover type, increasing with vegetation height. This sensitivity varies seasonally, which we attribute to snow insulation, the burial of vegetation and objects around the station, and potentially the role of frozen ground. Wind direction also manifests in seismic data, which we attribute to turbulent air on the lee side of station huts coupling with the ground and the seismometer borehole cap. We find some dependence on bedrock type, with a greater seismic response in unconsolidated sediment. These results provide guidance on site selection and construction, and make it possible to forecast seismic network performance under different wind conditions. When we examine the factors at work in a warming climate, we find reason to anticipate increasing seismic noise from wind in the Arctic over the decades to come.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.