ABSTRACT

Here, all three components of the seismic signal are applied for use with the amplitude source location (ASL) method to investigate if using all three components yield more accurate results than using just the vertical component. Eight active source events along a debris flow channel on Te Maari Volcano, New Zealand, are used as known source locations to conduct the test. Both coda‐wave normalization (CWN) and horizontal‐to‐vertical (H/V) ratio methods are used to calculate amplification factors for station corrections. Average location errors for all the active seismic sources varied between 0.47 km for the vertical component and 0.51 km for three components while using the CWN method, and 0.92 km (vertical) and 0.83 km (three component) using the H/V method. We also conduct statistical analysis through an F‐test by calculating root mean square errors (RMSEs) to determine if the results were statistically different. The RMSE analysis for the active source events shows location results for event 1 and 7 producing errors of 2.18±1.33 and 2.37±1.29  km for the vertical‐component results, and 2.06±1.16 and 2.33±1.24  km for the three‐component results. The F‐test indicates that active source events higher up the debris flow channel (centrally located relative to the network) are statistically the same, whereas events lower down the channel (away from the center of the network) are statistically different. Results show that using all three components with the ASL method may not necessarily yield more accurate locations, but nevertheless may average the components to eliminate the extreme error values or amplify the signals, producing more precise results.

You do not currently have access to this article.