Abstract

Seismic hazard associated with Cascadia megathrust earthquakes is strongly dependent on the landward rupture extent and heterogeneous fault properties. We use 3D numerical simulations and a seismic velocity model for Cascadia to estimate coseismic deformation due to M 9–9.2 earthquake scenarios. Our earthquake source model is based on observations of the 2010 M 8.8 Maule and 2011 M 9.0 Tohoku earthquakes, which exhibited distinct strong motion‐generating subevents in the deep portion of the fault. We compare our estimates for land‐level change to paleoseismic estimates for coseismic coastal subsidence during the A.D. 1700 Cascadia earthquake. Results show that megathrust rupture extending to the 1  cm/yr locking contour provides a good match to geologic data. In addition, along‐strike variations in coastal subsidence can be matched by including low slip, strong motion‐generating subevents in the down‐dip region of the megathrust. This work demonstrates the potential to improve seismic hazard estimates for Cascadia earthquakes by comparing physics‐based earthquake simulations with geologic observations.

You do not currently have access to this article.