Waveform cross-correlation with bispectrum verification is combined with double-difference tomography to increase the precision of earthquake locations and constrain regional 3DP-wave velocity heterogeneity at Great Sitkin volcano, Alaska. From 1999 through 2005, the Alaska Volcano Observatory (AVO) recorded ∼1700 earthquakes in the vicinity of Great Sitkin, including two ML 4.3 earthquakes that are among the largest events in the AVO catalog. The majority of earthquakes occurred during 2002 and formed two temporally and spatially separate event sequences. The first sequence began on 17 March 2002 and was centered ∼20 km west of the volcano. The second sequence occurred on the southeast flank of Great Sitkin and began 28 May 2002. It was preceded by two episodes of volcanic tremor. Earthquake relocations of this activity on the southeast flank define a vertical planar feature oriented radially from the summit and in the direction of the assumed regional maximum compressive stress due to convergence along the Alaska subduction zone. This swarm may have been caused or accompanied by the emplacement of a dike. Relocations of the mainshock–aftershock sequence occurring west of Great Sitkin are consistent with rupture on a strike-slip fault. Tomographic images support the presence of a vertically dipping fault striking parallel to the direction of convergence in this region. The remaining catalog hypocenters relocate along discrete features beneath the volcano summit; here, low P-wave velocities possibly indicate the presence of magma beneath the volcano.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.