We searched for changes in local stress-field orientation at Mount Spurr volcano, Alaska, between August 1991 and December 2001. This study focuses on the stress-field orientation beneath Crater Peak vent, the site of three eruptions in 1992, and beneath the summit of Mount Spurr. Local stress tensors were calculated by inverting subsets of 140 fault-plane solutions for earthquakes beneath Crater Peak and 96 fault-plane solutions for earthquakes beneath Mount Spurr. We also calculated an upper-crustal regional stress tensor by inverting fault-plane solutions for 66 intraplate earthquakes located near Mount Spurr during 1991–2001. Prior to the 1992 eruptions, and for 11 months beginning with a posteruption seismic swarm, the axis of maximum compressive stress beneath Crater Peak was subhorizontal and oriented N67–76° E, approximately perpendicular to the regional axis of maximum compressive stress (N43° W). The strong temporal correlation between this horizontal stress-field rotation (change in position of the σ1 /σ3 axes relative to regional stress) and magmatic activity indicates that the rotation was related to magmatic activity, and we suggest that the Crater Peak stress-field rotation resulted from pressurization of a network of dikes. During the entire study period, the stress field beneath the summit of Mount Spurr also differed from the regional stress tensor and was characterized by a vertical axis of maximum compressive stress. We suggest that slip beneath Mount Spurr’s summit occurs primarily on a major normal fault in response to a combination of gravitational loading, hydrothermal circulation, and magmatic processes beneath Crater Peak.

Online material: Regional and local fault-plane solutions.

You do not currently have access to this article.