Abstract

The deformation of the seafloor under loading by long-period ocean waves raises vertical component noise levels at the deep seafloor by 20 to 30 dB above noise levels at good continental sites in the band from 0.001 to 0.04 Hz. This noise substantially limits the detection threshold and signal-to-noise ratio for long-period phases of earthquakes observed by seafloor seismometers. Borehole installation significantly improves the signal-to-noise ratio only if the sensor is installed at more than 1 km below the seafloor because the deformation signal decays slowly with depth. However, the vertical-component deformation signal can be predicted and suppressed using seafloor measurements of pressure fluctuations observed by differential pressure gauges. The pressure observations of ocean waves are combined with measurements of the transfer function between vertical acceleration and pressure to predict the vertical component deformation signal. Subtracting the predicted deformation signal from pressure observations can reduce vertical component noise levels near 0.01 Hz by more than 25 dB, significantly improving signal-to-noise ratios for long-period phases. There is also a horizontal-component deformation signal but it is smaller than the vertical-component signal and only significant in shallow water (<1-km deep). The amplitude of the deformation signal depends both on the long-period ocean-wave spectrum and the elastic-wave velocities in the oceanic crust. It is largest at sedimented sites and in shallow water.

First Page Preview

First page PDF preview
You do not currently have access to this article.