We present an analysis of the coherence of seismic ground motion recorded on alluvial sediments in the San Fernando Valley, California. Using aftershocks of the 17 January 1994 Mw6.7 earthquake recorded at a quasi-dense array of portable stations, we analyze the coherence of three well-recorded magnitude 3.7 to 4.0 events over the frequency range 0.5 to 15 Hz and a distance range of 0.5 to 5.3 km. All stations are located at sites with broadly similar near-site geology, characterized by medium to fine-grain Quaternary alluvial sediments. On average, relatively high values of coherence are observed for distances up to 3 to 4 km and frequencies up to 2 to 3 Hz; coherence drops sharply at frequencies near and above 3 Hz. Although average coherence functions are described reasonably well by a log-linear relationship with frequency, the curves at all distances exhibit a flattening at low frequencies that is not consistent with previous observations of coherence at hardrock sites. The distance decay of coherence is also markedly less strong, with high coherence values observed over station separations corresponding to multiple wavelengths. This may reflect fundamental differences in shallow-wave propagation in the two environments, with high-frequency scattering relatively more dominant in regions of hard-rock near-surface geology. Within a sedimentary basin or valley, the site response itself generally reflects a resonance phenomenon that may tend to give rise to more uniform ground motions. However, previous studies have demonstrated the existence of pathological focusing and amplification effects within complex sedimentary basin environments such as the greater Los Angeles region; our results undoubtedly do not quantify the full range of ground-motion variability at all sites, but rather represent the level of that variability that can be expected, and quantified, for typical source/receiver paths.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.