Abstract

The aim of the present article is to further check the use of the horizontal-to-vertical (h/v) spectral ratio, which has been recently suggested as an indicator of site effects. The data set consists of 110, three-component, high sensitivity accelerograms, recorded at five different depths by the Garner Valley Downhole Array (GVDA), in southern California, with peak ground accelerations 0.0002 gag ≦ 0.04 g, magnitudes 3.0 ≦ ML ≦ 4.6, and hypocentral distances 16 km ≦ R ≦ 107 km. First, the stability of the (h/v) spectral ratio is investigated by computing the mean for the whole data set in different depths. The (h/v) spectral ratio on the surface is compared with the surface-to-depth standard spectral ratio, with theoretical S-wave transfer functions derived from the vertical geotechnical profile, as well as with the (h/v) spectral ratio of synthetic accelerograms generated by the discrete wavenumber method. Both theoretical and experimental data show a good stability of the (h/v) spectral ratio shape, which is in good agreement with the local geological structure and is insensitive to the source location and mechanism. However, the absolute level of the (h/v) spectral ratio depends on the wave field and is different from the surface-to-depth spectral ratio. Consequently the (h/v) spectral ratio technique provides only partially the information that can be obtained from a downhole array. But surface-to-depth ratios may also be misleading because they combine effects at surface and at depth.

First Page Preview

First page PDF preview
You do not currently have access to this article.