Abstract

We outline a simple signal detection approach for multi-channel seismic data. Our approach is based on the premise that the wave-field spatial coherence increases when a signal is present. A measure of spatial coherence is provided by the largest eigenvalue of the multi-channel data's sample covariance matrix. The primary advantages of this approach are its speed and simplicity. For three-component data, this approach provides a more robust statistic than particle motion polarization. For array data, this approach provides beamforming-like signal detection results without the need to form beams. This approach allows several options for the use of three-component array data. Detection statistics for three-component, vertical-component array, and three different three-component array approaches are compared to conventional and minimum-variance vertical-component beamforming. Problems inherent in principal-component analysis (PCA) in general and PCA of high-frequency seismic data in particular are also discussed. Multi-channel beamforming and the differences between principal component and factor analysis are discussed in the appendix.

First Page Preview

First page PDF preview
You do not currently have access to this article.