Abstract

An artificial neural network-based pattern classification system is applied to seismic event detection. We have designed two types of Artificial Neural Detector (AND) for real-time earthquake detection. Type A artificial neural detector (AND-A) uses the recursive STA/LTA time series as input data, and type B (AND-B) uses moving window spectrograms as input data to detect earthquake signals. The two AND's are trained under supervised learning by using a set of seismic recordings, and then the trained AND's are applied to another set of recordings for testing. Results show that the accuracy of the artificial neural network-based seismic detectors is better than that of the conventional algorithms solely based on the STA/LTA threshold. This is especially true for signals with either low signal-to-noise ratio or spikelike noises.

First Page Preview

First page PDF preview
You do not currently have access to this article.