An artificial neural network-based pattern classification system is applied to seismic event detection. We have designed two types of Artificial Neural Detector (AND) for real-time earthquake detection. Type A artificial neural detector (AND-A) uses the recursive STA/LTA time series as input data, and type B (AND-B) uses moving window spectrograms as input data to detect earthquake signals. The two AND's are trained under supervised learning by using a set of seismic recordings, and then the trained AND's are applied to another set of recordings for testing. Results show that the accuracy of the artificial neural network-based seismic detectors is better than that of the conventional algorithms solely based on the STA/LTA threshold. This is especially true for signals with either low signal-to-noise ratio or spikelike noises.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.