Abstract

Teleseismic broadband P and S waves recorded at the NARS station NE06 (Dourbes, Belgium) are shown to exhibit strong anomalous particle motion not attributable to instrument miscalibration or malfunction. Azimuthally varying radial and tangential components have been observed on 38 recordings after vector rotation of horizontal P waves into the ray direction. The tangenital P waves attain amplitudes comparable to the radial components from the east with negative polarity and west with positive polarity, but tend to be zero in the north and south, suggesting major discontinuities in the crust dipping southward. The SH wave from the east contains a large SPmP phase, an S-to-P conversion at the free surface and then reflected back to the surface from the Moho. The polarity of this SPmP phase presents further evidence for a southward-dipping Moho.

We employ ray theory for three-dimensionally dipping interfaces to compute the P-wave response. Linear inverse theory with smoothness constraints is applied to the simultaneous inversions of P-wave receiver functions for four different backazimuths. Through the progressive change of interface strike and dip and the inversion of layer shear-wave velocities, a dipping crustal model that is consistent with both the observed waveforms and results of previous local geophysical surveys has been determined. The results suggest a large velocity contrast in the shallow structure near the surface, another major interface at a depth of 12 km with dip of 10°, and a seismically transparent unit below the interface. The interface at a depth of 12 km reportedly emerges at the Midi fault 50 km north of the station NE06.

First Page Preview

First page PDF preview
You do not currently have access to this article.