Abstract

Paleoearthquake and fault slip-rate data are combined with the CIT-USGS catalog for the period 1944 to 1992 to examine the shape of the magnitude-frequency distribution along the major strike-slip faults of southern California. The resulting distributions for the Newport-Inglewood, Elsinore, Garlock, and San Andreas faults are in accord with the characteristic earthquake model of fault behavior. The distribution observed along the San Jacinto fault satisfies the Gutenberg-Richter relationship. If attention is limited to segments of the San Jacinto that are marked by the rupture zones of large historical earthquakes or distinct steps in fault trace, the observed distribution along each segment is consistent with the characteristic earthquake model. The Gutenberg-Richter distribution observed for the entirety of the San Jacinto may reflect the sum of seismicity along a number of distinct fault segments, each of which displays a characteristic earthquake distribution. The limited period of instrumental recording is insufficient to disprove the hypothesis that all faults will display a Gutenberg-Richter distribution when averaged over the course of a complete earthquake cycle. But, given that (1) the last 5 decades of seismicity are the best indicators of the expected level of small to moderate-size earthquakes in the next 50 years, and (2) it is generally about this period of time that is of interest in seismic hazard and engineering analysis, the answer to the question posed in the title of the article, at least when concerned with practical implementation of seismic hazard analysis at sites along these major faults, appears to be the “characteristic earthquake distribution.”

First Page Preview

First page PDF preview
You do not currently have access to this article.