Abstract

Group velocity dispersion of explosion-generated seismic surface waves with periods ranging from 0.2 to 1.5 sec is used to investigate shallow crustal structure of eastern and central Tennessee. Several modes of both Rayleigh and Love waves can be identified and separated on the seismograms of seven SARSN regional network stations by zero-phase digital filtering. Dispersion data for sinusoidal wave motion were based on digitized zero-crossing times.

By forward modeling, we find that a wave guide of at least two layers over a half-space can adequately represent our particular multi-mode, narrow-band observations. In a layered section about 3 km thick, lower velocities characterize outcropping clastic rocks of the Cumberland plateau, and higher velocities correspond to shallow carbonate rocks of the Nashville Dome. Half-space shear velocities of about 3.9 km/sec appear to represent lower Paleozoic carbonate lithology deeper than 2 to 4 km on most of the observed paths.

Our best data, interpreted jointly with earlier data of Oliver and Ewing (1958) and of Chen et al. (1989), have a composite period range of 0.2 to 40 sec, but they represent different Appalachian paths. Group velocities over this broad spectrum are satisfied by a complex model with two low-velocity layers. The uniqueness of this model cannot be demonstrated, but it represents important hypotheses concerning regional geologic features that can be tested more rigorously by improved surface-wave dispersion data.

First Page Preview

First page PDF preview
You do not currently have access to this article.