Surface waves recorded at regional distances are used to study the source parameters for three of the larger aftershocks of the 18 October 1989, Loma Prieta, California, earthquake. The short-period P-wave first-motion focal mechanisms indicate a complex aftershock sequence with a wide variety of mechanisms. Many of these events are too small for teleseismic body-wave analysis; therefore, the regional surface-waves provide important long-period information on the source parameters. Intermediate-period Rayleigh- and Love-wave spectra are inverted for the seismic moment tensor elements at a fixed depth and repeated for different depths to find the source depth that gives the best fit to the observed spectra. For the aftershock on 19 October at 10:14:35 (md = 4.2), we find a strike-slip focal mechanism with right lateral motion on a NW-trending vertical fault consistent with the mapped trace of the local faults. For the aftershock on 18 October at 10:22:04 (md = 4.4), the surface waves indicate a pure reverse fault with the nodal planes striking WNW. For the aftershock on 19 October at 09:53:50 (md = 4.4), the surface waves indicate a strike-slip focal mechanism with a NW-trending vertical nodal plane consistent with the local strike of the San Andreas fault. Differences between the surface-wave focal mechanisms and the short-period P-wave first-motion mechanisms are observed for the aftershocks analyzed. This discrepancy may reflect the real variations due to differences in the band width of the two observations. However, the differences may also be due to (1) errors in the first-motion mechanism due to incorrect near-source velocity structure and (2) errors in the surface-wave mechanisms due to inadequate propagation path corrections.

First Page Preview

First page PDF preview
You do not currently have access to this article.