Abstract

Except for its very onset, the P wave of earthquakes and chemical explosions observed at two narrow-aperture arrays on hard-rock sites in the Adirondack Mountains have a nearly random polarization. The amount of energy on the vertical, radial, and transverse components is about equal over the frequency range 5 to 30 Hz, for the entire seismogram. The spatial coherence of the seismograms is approximately exp(−cfΔx), where c is in the range 0.4 to 0.7 km−1Hz−1, f is frequency and Δx is the distance between array elements. Vertical, radial, and transverse components were quite coherent over the aperture of the array, indicating that the transverse motion of the compressional wave is a property of relatively large (106 m3) volumes of rock, and not just an anomaly caused by a malfunctioning instrument, poor instrument-rock coupling, or out-crop-scale effects. The spatial coherence is approximately independent of component, epicentral azimuth and range, and whether P- or S-wave coda is being considered, at least for propagation distances between 5 and 170 km. These results imply a strongly and three-dimensionally heterogeneous crust, with near-receiver scattering in the uppermost crust controlling the coherence properties of the waves.

First Page Preview

First page PDF preview
You do not currently have access to this article.