Long-period body waves from the 24 November 1987, Superstition Hills earthquake are studied to determine the focal mechanism and spatial extent of the seismic source. The earthquake is a complex event consisting of two spatially distinct subevents with different focal mechanisms. Two consistent models of rupture are developed. For both models, the second subevent begins 8 sec after the initiation of the first subevent and the preferred centroid depth lies between 4 to 8 km. Model 1 consists of two point sources separated by 15 to 20 km along strike of the Superstition Hills fault. Model 2 consists of one point source and one line source with a rupture velocity of 2.5 km/sec with moment release distributed along strike of the focal plane at a distance of 10 to 22 km from the epicenter. These moment release patterns show that a significant amount of long-period energy is radiated from the southern segment of the fault. Total moment release for both models is approximately 8 × 1025 dyne-cm. Both models also suggest a change of dip from near vertical near the epicenter to steeply southwesterly dipping along the southern segment of the fault. The difference in rupture characteristics and fault dips seen teleseismically is also reflected in aftershock and afterslip data, and crustal structure underlying the two fault segments. The northern segment had more aftershocks and a smaller proportion of afterslip than the southern segment. The boundary between the two segments lies at a step in the basement that separates a deeper metasedimentary basement to the south from a shallower crystalline basement to the north.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.