The Fourier method, the second-order finite-difference method, and a fourth-order implicit finite-difference method have been tested using analytical phase and group velocity calculations, homogeneous velocity model calculations for disperson analysis, two-dimensional layered-interface calculations, comparisons with the Cagniard-de Hoop method, and calculations for a laterally heterogeneous model. Group velocity rather than phase velocity dispersion calculations are shown to be a more useful aid in predicting the frequency-dependent travel-time errors resulting from grid dispersion, and in establishing criteria for estimating equivalent accuracy between discrete grid methods. Comparison of the Fourier method with the Cagniard-de Hoop method showed that the Fourier method produced accurate seismic traces for a planar interface model even when a relatively coarse grid calculation was used. Computations using an IBM 3083 showed that Fourier method calculations using fourth-order time derivatives can be performed using as little as one-fourth the CPU time of an equivalent second-order finite-difference calculation. The Fourier method required a factor of 20 less computer storage than the equivalent second-order finite-difference calculation. The fourth-order finite-difference method required two-thirds the CPU time and a factor of 4 less computer storage than the second-order calculation. For comparison purposes, equivalent runs were determined by allowing a group velocity error tolerance of 2.5 per cent numerical dispersion for the maximum seismic frequency in each calculation. The Fourier method was also applied to a laterally heterogeneous model consisting of random velocity variations in the lower half-space. Seismograms for the random velocity model resulted in anticipated variations in amplitude with distance, particularly for refracted phases.

First Page Preview

First page PDF preview
You do not currently have access to this article.