Coda Q values were derived for more than 300 microearthquakes that occurred in a 6-yr period before the 16 November 1983 Kaoiki, Hawaii, earthquake (MS = 6.6). The sources were located within a 14 × 16 km rectangular region surrounding the main shock epicenter, and most of them occurred at depths between 5 and 10 km. Digital recordings from three stations at epicentral distances ranging from 0 to 18 km were used. Coda Q was calculated from the amplitude decay rate of the S-wave coda in nine frequency bands from 4.5 to 27 Hz. The average Q of the NW part of the studied area is about 15 per cent higher than that of the SE part. These two subregions also showed differences in seismicity, b value, and microearthquake source mechanisms. In the high-Q volume, the b value was 1.0, and the rate of earthquakes per unit volume was about 50 per cent of the rate in the low-Q volume where b = 1.3. One interpretation of these observations is that more extensive faulting in the SE Kaoiki fault zone leads to lower Q, higher b value, and a higher seismicity rate. During the 5 to 6 yr before the mainshock, the 1-yr average Q values were stable. No significant Q change could be identified as a precursor to the main shock.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.