Abstract

The ML 6.4 Chalfant, California, earthquake of 21 July 1986 was preceded by an extensive foreshock sequence. Foreshock activity is characterized by shallow clustering activity, including 7 events greater than ML 3, beginning 18 days before the earthquake, an ML 5.7 foreshock 24 hr before the main shock that ruptured only in the upper 10 km of the crust, and an “off-fault” cluster of activity perpendicular to the slip surface of the ML 5.7 foreshock associated with the hypocenter of the main shock. The Chalfant sequence occurred within the local short-period network, and the spatial and temporal development of the foreshock sequence can be observed in detail. Seismicity of the July 1986 time period is largely confined to two nearly conjugate planes; one striking N30°E and dipping 60° to the northwest associated with the ML 5.7 foreshock and the other striking N25°W and dipping 70° to the southwest associated with the main shock. Focal mechanisms for the foreshock period fall into two classes in agreement with these two planes. Shallow clustering of earthquakes in July and the ML 5.7 principal foreshock occur at the intersection of the two planes at a depth of approximately 7 km. The seismic moments determined from inversion of the teleseismic body waves are 4.2 × 1025 and 2.5 × 1025 dyne-cm for the principal foreshock and the main shock, respectively. Slip areas for these two events can be estimated from the aftershock distribution and result in stress drops of 63 bars for the principal foreshock and 16 bars for the main shock. The main shock occurred within an “off-fault” cluster of earthquakes associated with the principal foreshock. This cluster of activity occurs at a predicted local shear stress high in relation to the slip surface of the 20 July earthquake, and this appears to be the triggering mechanism of the main shock. The shallow rupture depth of the principal foreshock indicates that this event was anomalous with respect to the character of main shocks in the region.

First Page Preview

First page PDF preview
You do not currently have access to this article.