Abstract

Measurements of slip on major faults in southern California have been performed over the past 18 yr using principally theodolite alignment arrays and tautwire extensometers. They provide geodetic control within a few hundred meters of the fault traces, which complements measurements made by other techniques at larger distances. Approximately constant slip rates of from 0.5 to 5 mm/yr over periods of several years have been found for the southwestern portion of the Garlock fault, the Banning and San Andreas faults in the Coachella Valley, the Coyote Creek fault, the Superstition Hills fault, and an unnamed fault 20 km west of El Centro. These slip rates are typically an order of magnitude below displacement rates that have been geodetically measured between points at greater distances from the fault traces. Exponentially decaying postseismic slip in the horizontal and vertical directions due to the 1979 Imperial Valley earthquake has been measured. It is similar in magnitude to the coseismic displacements. Analysis of seismic activity adjacent to slipping faults has shown that accumulated seismic moment is insufficient to explain either the constant or the decaying postseismic slip. Thus the mechanism of motion may differ from that of slipping faults in central California, which move at rates close to the plate motion and are accompanied by sufficient seismic moment. Seismic activity removed from the slipping faults in southern California may be driving their relatively aseismic motion.

First Page Preview

First page PDF preview
You do not currently have access to this article.