Abstract

Averages of P- and S-wave radiation patterns over all azimuths and various ranges of takeoff angles (corresponding to observations at teleseismic, regional, and near distances) have been computed for use in seismological applications requiring average radiation coefficients. Various fault orientations and averages of the squared, absolute, and logarithmic radiation patterns have been considered. Effective radiation patterns combining high-frequency direct and surfacere-flected waves from shallow faults have also been derived and used in the computation of average radiation coefficients at teleseismic distances.

In most cases, the radiation coefficients are within a factor of 1.6 of the commonly used values of 0.52 and 0.63 for the rms of P- and S-wave radiation patterns, respectively, averaged over the whole focal sphere. The main exceptions to this conclusion are the coefficients for P waves at teleseismic distances from vertical strike-slip faults, which are at least a factor of 2.8 smaller than the commonly used value.

First Page Preview

First page PDF preview
You do not currently have access to this article.