abstract

In this paper, we study the long-period body waves at regional and upper mantle distances from large underground nuclear explosions at Pahute Mesa, Nevada Test Site. A comparison of the seismic records from neighboring explosions shows that the more recent events have much simpler waveforms than those of the earlier events. In fact, many of the early events produced waveforms which are very similar to those produced by shallow, moderate-size, strike-slip earthquakes; the phase sP is particularly obvious. The waveforms of these explosions can be modeled by assuming that the explosion is accompanied by tectonic release represented by a double couple. A clear example of this phenomenon is provided by a comparison of GREELEY (1966) and KASSERI (1975). These events are of similar yields and were detonated within 2 km of each other. The GREELEY records can be matched by simply adding synthetic waveforms appropriate for a shallow strike-slip earthquake to the KASSERI observations. The tectonic release for GREELEY has a moment of 5 × 1024 dyne-cm and is striking approximately 340°. The identification of the sP phase at upper mantle distances indicates that the source depth is 4 km or less. The tectonic release time function has a short duration (less than 1 sec). A comparison of these results with well-studied strike-slip earthquakes on the west coast and eastern Nevada indicate that, if tectonic release is triggered fault motion, then the tectonic release is relatively high stress drop, on the order of several hundred bars. It is possible to reduce these stress drops by a factor of 2 if the tectonic release is a driven fault; i.e., rupturing with the P velocity. The region in which the stress is released for a megaton event has a radius of about 4 km. Pahute Mesa events which are detonated within this radius of a previous explosion have a substantially reduced tectonic release.

First Page Preview

First page PDF preview
You do not currently have access to this article.