The rate of occurrence of earthquakes shallower than 100 km during the years 1963 to 1980 was studied as a function of time and space along the New Hebrides island arc. Systematic examination of the seismicity rates for different magnitude bands showed that events with mb < 4.8 were not reported consistently over time. The seismicity rate as defined by mb ≧ 4.8 events was examined quantitatively and systematically in the source volumes of three recent main shocks and within two seismic gaps. A clear case of seismic quiescence could be shown to have existed before one of the large main shocks if a major asperity was excluded from the volume studied. The 1980 Ms = 8 rupture in the northern New Hebrides was preceded by a pattern of 9 to 12 yr of quiescence followed by 5 yr of normal rate. This pattern does not conform to the hypothesis that quiescence lasts up to the mainshock which it precedes. The 1980 rupture also did not fully conform to the gap hypothesis: half of its aftershock area covered part of a great rupture which occurred in 1966. A major asperity seemed to play a critical role in the 1966 and 1980 great ruptures: it stopped the 1966 rupture, and both parts of the 1980 double rupture initiated from it. In addition, this major asperity made itself known by a seismicity rate and stress drops higher than in the surrounding areas. Stress drops of 272 earthquakes were estimated by the MS/mb method. Time dependence of stress drops could not be studied because of changes in the world data set of Ms and mb values. Areas of high stress drops did not correlate in general with areas of high seismicity rate. Instead, outstandingly high average stress drops were observed in two plate boundary segments with average seismicity rate where ocean floor ridges are being subducted. The seismic gaps of the central and northern New Hebrides each contain seismically quiet regions. In the central New Hebrides, the 50 to 100 km of the plate boundary near 18.5°S showed an extremely low seismicity rate during the entire observation period. Low seismicity could be a permanent property of this location. In the northern New Hebrides gap, seismic quiescence started in mid-1972, except in a central volume where high stress drops are observed. This volume is interpreted as an asperity, and the quiescence may be interpreted as part of the preparation process to a future large main shock near 13.5°S.

First Page Preview

First page PDF preview
You do not currently have access to this article.