Abstract

Results from a synthetic seismogram analysis of the short-period P waves from the Borrego Mountain earthquake of 9 April 1968 (ML = 6.4) are used to model the strong-motion recording at El Centro. A short-period-long-period deconvolution analysis of the teleseismic P waves suggested that a two-source model would fit the data much better than the single-source model presented by Burdick and Mellman (1976). Forward and inverse modeling of the data demonstrated that two sources, each of less than 2-sec duration, the second occurring 2.2 sec after the first and both being at about 8-km depth, best fit the short-period waveforms. From this model, long-period synthetics were generated which were found to be quite compatible with the data. This source model was also used to synthesize the strong-motion SH displacement, velocity, and acceleration records from El Centro, California. The close match of synthetics and data is used to argue that short-period waveforms contain much information about asperities which play a crucial role in the near-source strong motions from an earthquake. The Borrego Mountain event probably began with the failure of a fault asperity. The evidence for this is the several-hundred-bars stress drops of the two short-period sources and the probable location of these sources in a place where there was almost no aftershock activity or postseismic creep on the fault.

First Page Preview

First page PDF preview
You do not currently have access to this article.