Results from a synthetic seismogram analysis of the short-period P waves from the Borrego Mountain earthquake of 9 April 1968 (ML = 6.4) are used to model the strong-motion recording at El Centro. A short-period-long-period deconvolution analysis of the teleseismic P waves suggested that a two-source model would fit the data much better than the single-source model presented by Burdick and Mellman (1976). Forward and inverse modeling of the data demonstrated that two sources, each of less than 2-sec duration, the second occurring 2.2 sec after the first and both being at about 8-km depth, best fit the short-period waveforms. From this model, long-period synthetics were generated which were found to be quite compatible with the data. This source model was also used to synthesize the strong-motion SH displacement, velocity, and acceleration records from El Centro, California. The close match of synthetics and data is used to argue that short-period waveforms contain much information about asperities which play a crucial role in the near-source strong motions from an earthquake. The Borrego Mountain event probably began with the failure of a fault asperity. The evidence for this is the several-hundred-bars stress drops of the two short-period sources and the probable location of these sources in a place where there was almost no aftershock activity or postseismic creep on the fault.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.