This paper describes a new recursive digital algorithm for computing the response spectrum from acceleration data. The algorithm digitally implements a single degree of freedom oscillator using a covariance-invariant digital filter. It is shown that this technique will produce an accurate response spectrum from input data that have been sampled at a rate that is as low as three times the oscillator natural frequency, fn. The more common response spectrum digital filter obtained using a bilinear z transformation technique requires a sampling rate of ten times fn. The fact that the algorithm can be used for data with a low sampling rate makes it particularly well suited for real time, multi-frequency calculation of response spectra with a microprocessor system.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.