Wood-Anderson seismograms recorded at Mount Hamilton (MHC, 185 km, 327°), Santa Barbara (SBC, 180 km, 158°), and Tinemaha (TIN, 240 km, 56°) provide data for comparing P-wave spectra for two immediate (17-min) foreshocks, one early (55-hr) foreshock, two aftershocks, and two “isolated” Parkfield earthquakes. All are ML 5.0 shocks with epicenters within 7 km of the common epicenter of the 1934 and 1966 Parkfield main shocks. The set of events is well suited for testing the hypothesis that foreshocks are high-stress-drop sources. Calculated stress drops are controlled by source directivity at azimuths aligned with the fault break (at MHC and SBC). P-wave radiation from the three foreshocks is focused along one fault trace azimuth, suggesting that foreshock sources are characterized by pronounced unilateral rupture expansion. At TIN, broadside to the fault where directivity has minimum effect on calculated relative stress drop, the two immediate foreshocks are higher stress-drop sources. The early foreshock is a low-to-average stress-drop source, indicating the possibility that stress concentration is a rapidly occurring phenomenon in rupture nucleation. Alternatively, the stress field is highly variable on the scale of 2 to 3 km in the focal region of an impending earthquake with a rupture length of 20 to 30 km.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.