abstract
Deep S-wave velocity measurements were planned at two separate sites in the Tokyo area from the earthquake engineering point of view, and actually carried out down to 2 to 3 km in depth using geophysical observation wells.
S-waves were produced by means of ordinary small explosions and a specially designed SH-wave generator. A set of three component seismometers was installed in a capsule having a device that is clamped to the borehole wall. Measurements to the bottom of the wells were conducted at about 15 different depths at intervals of 100 to 500 m.
The S-wave velocities are around 0.8 km/sec in Pleistocene soils, 1.2 to 1.6 km/sec in Miocene soils, and 2.5 to 2.7 km/sec in Cambrian rocks. The corresponding P-wave velocities are 2.0 to 2.3 km/sec, 2.6 to 3.0 km/sec, and 4.7 to 4.9 km/sec, respectively. These data show both S- and P-wave velocities in deep soil deposit increasing with depth. The greatest velocity difference is at the boundary above the pre-Tertiary rocks.
The velocity structures completely agree with the known data such as sonic logs, density distributions, and geological sections. A comparison with velocity profiles at two separate sites was also made as the first step to visualize the three-dimensional underground structure in the Tokyo metropolitan area.
The seismological and earthquake engineering importance of shear-wave velocity measurements for thick soil deposits was demonstrated by approximate calculations of the amplification of seismic waves between ground surface and bedrock.