abstract

Surface waves generated by six earthquakes and two nuclear explosions are used to study the attenuation coefficients of the fundamental Rayleigh mode across Eurasia. Rayleigh-wave amplitude data yield average attenuation coefficients at periods between 4 and 50 sec. The data exhibit relatively large standard deviations and in some cases the average attenuation coefficients take on negative values which may be due to regional variations of the attenuative properties of the crust, lateral refraction, multipathing and scattering.

A method has been developed to investigate the regional variation in the attenuative properties of the Eurasian crust and its effect on surface-wave amplitude data, employing the evaluated average attenuation coefficients for the fundamental Rayleigh mode. For this investigation, Eurasia is divided into two regions, one considered to be relatively stable, and the other considered to be tectonic in nature. This regionalization shows that the tectonic regions exhibit higher attenuation than the stable regions in the period range below about 20 sec, whereas in the period range above about 20 sec, no clear difference can be observed for the two regions. Although the effects of lateral refraction and multipathing may still significantly affect the observations, the regionalization lowers the standard deviations considerably and eliminates the negative values which were obtained in the unregionalized determinations.

First Page Preview

First page PDF preview
You do not currently have access to this article.