SH ground-displacement spectra (1 to 12 Hz) for 16 local earthquakes (Δ ≦ 18 km, 1.1 ≦ M ≦ 4.6) recorded at a common site situated atop the active trace of the San Andreas fault are used to estimate attenuation characteristics for propagation paths along the fault trace. t* = 0.10−0.13 (corresponding to an equivalent total path Qβ = 75−100) is appropriate for events with focal depths of ∼ 10 km.

Propagation-path effects, and not processes at the earthquake source, control corner frequencies for small (M ≲ 3) earthquakes for these highly attenuating paths. The results obtained here suggest that as a rule of thumb, if the true equivalent total path Q is as low as 4·ƒc·t, where ƒc is the estimated corner frequency and t the travel time, the corner frequency estimate is determined by propagation-path effects, not by processes at the earthquake source. In these cases, reliable estimates of source parameters can only be obtained if the appropriate propagation-path corrections are known.

Using Brune's model of shear-wave spectra, source dimensions L = 2r of less than 250 meters and stress drops greater than about 110 bar are estimated for the smaller events (1.1 ≦ M ≦ 2.2), using the equivalent total path Qβ obtained here. The seismic moments obtained in this study, together with data for larger central California events (2.4 ≦ ML ≦ 5.1) obtained by Johnson and McEvilly (1974), imply a linear log seismic moment-magnitude relation for 1 < ML < 5

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page of Shear-wave attenuation along the San Andreas fault zone in central California
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.