The source process of the Wakasa Bay earthquake (M = 6.9, 35.80°N, 135.76°E, depth 4 km) which occurred near the west coast of Honshu Island, Japan, on March 26, 1963, is studied on the basis of the seismological data. Dynamic and static parameters of the faulting are determined by directly comparing synthetic seismograms with observed seismograms recorded at seismic near and far distances. The De Hoop-Haskell method is used for the synthesis. The average dislocation is determined to be 60 cm. The overall dislocation velocity is estimated to be 30 cm/sec, the rise time of the slip dislocation being determined as 2 sec. The other fault parameters determined, with supplementary data on the P-wave first motion, the S-wave polarization angle, and the aftershocks, are: source geometry, dip direction N 144°E, dip angle 68°, slip angle 22° (right-lateral strike-slip motion with some dip-slip component); fault dimension, 20 km length by 8 km width; rupture velocity, 2.3 km/sec (bilateral); seismic moment, 3.3 × 1025 dyne-cm; stress drop, 32 bars. The effective stress available to accelerate the fault motion is estimated to be about 40 bars. The approximate agreement between the effective stress and the stress drop suggests that most of the effective stress was released at the time of the earthquake.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.