We construct a theoretical three-dimensional kinematical model of shallow-focus earthquake faulting in order to investigate the ratio of the P- and S-wave corner frequencies of the far-field elastic radiation. We attempt to incorporate in this model all of the important gross kinematical features which would arise if ordinary mechanical friction should be the dominant traction resisting fault motion. These features include a self-similar nucleation at a single point, a subsonic spreading of rupture away from that point, and a termination of faulting by smooth deceleration. We show that the ratio of the P-wave corner frequency to the S-wave corner frequency for any model which has these features will be less than unity at all points on the focal sphere.

First Page Preview

First page PDF preview
You do not currently have access to this article.