abstract

Using an Ms computational procedure that minimizes path-propagation effects, and with Ms values found to be empirically independent of test site and detonation medium among consolidated rock explosions, available yield information is employed to illustrate that the seismic scaling of explosions in realistic detonation environments produces teleseismic Rayleigh-wave displacements proportional to the 1.2-power of yield over the range from low yields to greater than three megatons. Ms values independent of network, path, and site can be employed to estimate unknown yields at uncalibrated test sites to within average errors judged to be about 20 per cent.

P-wave magnitudes, in the form of a calibrated teleseismic measure of short-period P-wave displacements, show a theoretically supported dependence of displacement on the 1.1-power of yield over the range from 6 kt to 1 mt. Studied explosions separate into two categories: the Nevada Test Site granite explosions, LONG SHOT, the Sahara February 1965 explosion and (by empirical inference) Novaya Zemlya and Eastern Kazakh explosions exhibit P-wave displacements about a factor of 3 greater than explosions of the same yield in tuff, rhyolite, and shale. P-wave magnitudes of explosions are subject to such a diversity of source, propagation, and measurement phenomena that any estimation of unknown yields without a closely controlled site and network calibration can be subject to large errors.

First Page Preview

First page PDF preview
You do not currently have access to this article.