Examination of the distance correction factor used in the widely accepted formula for surface-wave magnitude reveals that this empirically derived linear formula fails to give an accurate approximation to the theoretical nonlinear amplitude-distance relation for epicentral distances less than 15°. For epicentral distances greater than 15°, the empirical formula contains an implied oceanic-type energy-dissipation coefficient. When the original Gutenberg theoretical surface-wave magnitude formula with an appropriate continental energy-dissipation coefficient is applied to explosion data from the Nevada Test Site, a consistent surface-wave magnitude is obtained at all distances. A systematic method of normalizing Rayleigh-wave magnitudes obtained over different types of propagation paths is suggested. This normalization might provide a means for better separating natural events and explosions in the mb—Ms plots.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.