abstract

Seismic effects of the underground nuclear explosions MILROW (October 1969, about 1 megaton) and CANNIKIN (November 1971, under 5 megatons) were monitored by a network of continuously recording, high-frequency, high-gain seismographs located on Amchitka and nearby islands.

Each explosion was immediately followed by hundreds of small, discrete events (mB < 4), of similar focal mechanism and with a characteristic low-frequency signature, which were apparently related to the deterioration of the explosion cavity. This activity intensified, then terminated within minutes of a large, complex multiple event and concurrent formation of a surface subsided area that signaled complete collapse of the explosion cavity (MILROW, 37 hr; CANNIKIN, 38 hr).

A number of small explosion-stimulated tectonic events, apparently unrelated to the collapse phenomenon, occurred intermittently for several weeks following each explosion—near the explosion cavity and up to 13 km southeast of CANNIKIN ground zero along the Island. These events were confined to the upper crust of the Island, had characteristic high-frequency signatures, and, near the Rifle Range Fault, had focal mechanisms which could be correlated with pre-existing faulting. The evidence points to a short-term interaction of the explosions with local ambient tectonic stresses. Because these stresses are of relatively low level on Amchitka, the observed seismic effects were significantly less extensive and smaller than similar effects reported from high-yield explosions at the Nevada Test Site.

Continuous monitoring of the natural seismicity of the Amchitka region since 1969 has not revealed other evidence for an interaction between either MILROW or CANNIKIN and natural tectonic processes. The structural stability and apparent low level of stress in the upper crust of Amchitka suggest that the Island effectively is seismically decoupled from the active subduction zone below.

First Page Preview

First page PDF preview
You do not currently have access to this article.