An earth-flattening transformation is developed for wave-propagation problems that can be formulated in terms of uncoupled scalar Helmholtz equations. Through the transformation, wave problems in isotropic, spherically symmetric media with a specified radial heterogeneity can be expressed in terms of a flat geometry with a suitably vertical heterogeneity. The transformation is exact for homogeneous (no source) problems and is useful for normal mode studies. When a point source of waves is present, the earth-flattening transformation together with the Watson transform converts the reflected wave field from a sum over discrete, spherical eigenfunctions to an integral over continuous wave numbers in a flat geometry. The far-field form of this integral shares many properties with the Weyl integral and is useful for body-wave studies in a spherical earth.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.