abstract

Two or more dispersed wave trains each with constant amplitude will interfere giving a resultant wave train which is amplitude modulated, if the individual waves have their principal energies in a common frequency band and if the trains arrive with time separations small compared to their total length. The dispersive characteristics of the trains need not be the same. If the component trains are of comparable magnitude, the modulation due to interference becomes significant and a “beat” phenomenon occurs. Multiple trains of dispersed seismic surface waves may occur because of a temporal and/or spatial distribution at the source or because of multipath propagation. Each of these causal mechanisms influences the amplitude and phase spectra of the resultant wave train; derived properties such as phase velocities and amplitude ratios are also influenced. In the case of multipath propagation, wavelength dependent time delays may occur. Two cases of twin earthquakes are analyzed, and the significant features of interference are demonstrated. In one case, estimates are obtained for the amplitude ratio and time delay of the second shock with respect to the first. The interpretation of seismograms and spectra influenced by multiple events is discussed.

First Page Preview

First page PDF preview
You do not currently have access to this article.